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Abstract. This paper introduces the MINE DECISION RULE exten-
sion to SQL for mining classification rules. It allows the user to express
his/her mining requirements and to use the resulting rules to classify
unseen data. To enable the evaluation of an inductive query Q incorpo-
rating a MINE DECISION RULE expression, a typical object-relational
algebra has been augmented with the MineDR operator to mine deci-
sion rules. To evaluate Q, it is first translated into a query tree with
nodes containing operators in this augmented algebra, then the query
tree is transformed into an execution plan which is finally executed. A
prototype system supporting our approach is also presented.

1 Introduction

The huge amounts of data that are currently produced in digital format represent
a challenge for finding useful information. Knowledge Discovery in Databases
(KDD) is the non-trivial process of identifying valid, novel, potentially useful,
and understandable knowledge (in the form of patterns) in data [1]. The ex-
tracted knowledge can then be used to characterize the data or to classify new,
unseen data. KDD is an iterative and interactive process with several steps: un-
derstanding of the problem domain, data transformation, pattern discovery, and
pattern evaluation and usage. Data Mining techniques are applied to discover
patterns from raw data. In this paper we are interested in extracting classifica-
tion (or decision) rules of the form IF-THEN to classify new, uncategorized data
into a pre-defined set of classes. These rules then create a classification model
for each class based on attributes values. For instance, a rule might say that if
weather outlook is overcast then one can play Golf.

There is currently a large number of tools to help the analysts in the KDD
process. However, they fail in supporting the complete KDD process adequately:
analyzing data is a complicate job because there is no framework to manipulate
data and patterns homogeneously. Recently, Inductive Databases (IDBs) have
been proposed to remedy this situation. In this framework, a database contain,
in addition to the raw data, (implicit or explicit) patterns about the data [2].
The discovery of patterns can then be viewed as a special kind of database query-
ing and, in this context, query languages and associated query evaluation and
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optimization techniques are being proposed. Current research in this area has
focused on inductive querying of association rules [3, 4], sequential patterns (5]
and clusters [6].

The expression and evaluation of queries to mine classification rules have
been partially studied on the inductive database context. Some languages have
been proposed, such as DMQL (7], which provides primitives for extracting rules
and other kinds of patterns, AXL [8] that gives a user the possibility of extend-
ing SQL to introduce complex algorithms such as data mining functions, and
DMZX [9] that also provides expressions to support a variety of mining techniques,
including rule induction. These languages are important because they introduce
decision rule mining into the traditional database framework. However, in these
proposals, it is not clear how a query is processed, how the extracted rules can
be manipulated and how they can be used to classify new data.

In this paper, we propose the MINE DECISION RULE extension to SQL
for mining classification rules. It enables the user to express his/her rule mining
requirements such as the data source and the constraints that a rule must satisfy
to be considered in the final result. In order to manipulate homogeneously data
and rules, a typical object-relational data model is used [10]. For processing
queries using MINE DECISION RULE, we have extended a modified version of
the Object-Relational algebra presented in [10] with the MineDR operator (=)
to mine decision rules. This operator help us to produce and process algebraic
expressions to manipulate data and decision rules in the same framework. To
experiment our approach, we have implemented the DRMiner prototype system
to show the capabilities of our language and test query processing techniques.

This paper is organized as follows. Section 2 overviews related work. Section 3
briefly describes the OR model and introduces the elements extending this model
to represent decision rules. Section 4 presents MINE DECISION RULE. Section
5 summarizes the OR algebra and explains the MineDR operator. Section 6
describes the DRMiner prototype system. Finally, Section 7 concludes this paper
and introduces our future work.

2 Related Work

Extracting decision rules from small datasets is a problem that has been studied
for years. However, mining rules from large databases poses new challenges. In
order to discuss relevant related work, we have classified it in two categories:
rule learning algorithms, and inductive query languages and processing.

Research on rule learning algorithms has traditionally focused on improving
the heuristic search and the functions for rule evaluation. In general, algorithms
follow a covering strategy, i.e., an algorithm searches for a rule that explains a
part of its training instances (pre-classified data), separates these instances and
repeats the search for a rule until no instances remain. Popular rule learning
algorithms are R1 [11], PRISM [12], CN2 [13], PFOIL [14] and RIPPER [15]. A
useful analysis of these algorithms can be found in [16].
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Inductive query languages (such as MSQL [4] and MINE RULE [3]) have
mainly focused on association rule mining. Regarding the extraction of decision
rules, there are three proposals: DMQL (7], AXL [8] and DMX [9]. DMQL is a
language providing expressions to carry out an extensive set of data mining tasks,
and in particular it allows the user to generate rules to classify data according
to one or more attributes. It also allows the user to select and filter source data
from a table. However, DMQL does not provide support for rule filtering and
other post-processing operations (such as cross-over) and, for this, ad-hoc tools
have to be externally provided.

Another proposal is the AXL language. It allows the user to add some exten-
sions to SQL for expressing data mining tasks such as classification. By defining
a new aggregate function to implement a classifier, a classification technique
can be expressed in a SQL language expression. However, its main disadvantage
is that the mining algorithm has to be implemented, involving significant code
rewriting.

DMX (Data Mining Extension), like DMQL, provides several Data Mining
techniques. DMX is divided on a Data Definition Language (DDL) and a Data
Manipulation Language (DML). Using the DDL, the user has to define the data
model schema (using specific data types) and the proper algorithm to use, ac-
cording to the data mining task. The user then utilizes DML sentences to handle
the mining model and to perform prediction tasks. Let us remark that the re-
sulting mining model is a ”black box”, unless the user queries its description
using specific DML sentences.

There are other works that are useful to understand the KDD process and
the IDBs framework. These works are related to efficient mapping of patterns in
memory [17], development of general primitives for data mining tasks on query
languages [18-20] and development of a formal theory for IDBs [21, 22].

3 Data and Rules Model

This section introduces the model for data and decision rules. To represent them
homogeneously, the Object-Relational (OR) data model presented in [10] is used.
In the following, the OR model is briefly introduced and then the data types
proposed to represent rules are explained.

The basic components of the OR model are types. An OR database schema
consists of a set of row types Rj,...,R.,, and each attribute in a row type
is defined on a certain type, which can be a built-in type, an abstract data
type (ADT), a collection type, a reference type or another row type. An object-
relational database D on database scheme OR is a collection of row type instance
sets (called OR tables) orty,...,ort, such that for each OR table ort; there is
a corresponding row type RT}, and each tuple of ort; is an instance of the
corresponding row type R;.

Let us consider for instance the database shown in Figure 1. It contains two
tables: the Golf table and Xtest table. The Golf table stores a set of weather
conditions that can be used to decide if one can play Golf or not. Its row type
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Fig. 1. Example database

is composed by the attributes outlook, temperature, humidity, windy and play
(the attribute class) which are all of atomic types. The Xtest table stores data,
related to weather conditions but without specifying a class for each tuple.

The result of the processing of the MINE DECISION RULE expression is a
table named by default Decision-Rules which has the following row type:

decision-rule (idrule: integer, predicate: dr-pattern, class: string,
support: float, confidence: float)

where idrule is a unique identifier for a rule, predicate is the “body” of the rule
to predict a class (of type dr-pattern which will be defined later), class is the
label to be assigned and support and confidence are two accuracy measures of
each rule. The type dr-pattern is an Abstract Data Type (ADT) defined as:

dr-pattern( Equalityset:set(Equality), Ordered:boolean,
create: Func(boolean,set(Equality),boolean),
get-rule: Func(string),
exist: Func(boolean,string))

A dr-pattern has two attributes: Fqualityset and Ordered. Equalityset is
a non-empty set of values of type Equality, where each Equality represents a
selector of a rule, e.g. <humidity = “high”>. The value of the Ordered attribute
indicates the form in which the rules are tested against the data (more on this in
Section 6). There are three functions defined for dr-pattern. The create function
is a constructor that takes as input a set of Equality and a boolean value and
returns a boolean value indicating success or failure. The get-rule function gener-
ates as a string the body of a conjunctive rule from the selectors in Equalityset.
Finally, the Ezists function searches a string inside Equalityset and returns a
boolean value indicating the success or failure of the search.

The table shown in Figure 2 contains a set of rules describing the behavior of
the Golf data. For instance, rule number one says that when attribute outlook is
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Fig. 2. A table containing a set of decision rules

overcast then the predicted class is yes with a support of 0.28 and a confidence
of 1.0, i.e., one can play Golf.

4 The Mine Decision Rule Extension to SQL

This section introduces our MINE DECISION RULE extension to SQL for ex-
tracting classification rules. We have considered some features of the MINE
RULE language (3] in the design of MINE DECISION RULE: (a) selection of
relevant data, (b) definition of specific structures and (c) definition of conditions
to filter rules. The syntax is as follows:

MINE DECISION RULE [<target>]
WITH <attribute> AS CLASS
FROM <table> | <sub-query>
[WHERE <conditions>]

The MINE DECISION RULE clause produces a new table that can be op-
tionally renamed as indicated by < target >. The WITH < attribute > AS
CLASS clause specifies the < attribute > that contains the classes to be pre-
dicted. The FROM clause defines the data source (a table or a subquery) for
decision rule mining. Finally, the WHERE clause is optional and let the user
specify < conditions > to filter a set of rules to get only those of interest.

In the following, we present some examples to show how MINE DECISION
RULE can be used to express different queries. First, let us consider the query
Retrieve a set of decision rules to know when one can play Golf (or not) consid-
ering play as attribute class (Q1).

MINE DECISION RULE Xmodel
WITH play AS CLASS
FROM Golf

In this inductive query, the resulting table is renamed as Xmodel. The WITH
clause specifies the attribute that has the classes to be predicted, play in this
case. This line is mandatory because rules are built around this attribute. In this
example, the FROM clause defines as source the Golf table. With this query, the
user retrieves all possible rules with their respective support and confidence.

Now consider the query Retrieve a set of decision rules based on attributes
outlook and windy, to know when one can play Golf or not (Q2).
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MINE DECISION RULE Xmodel

WITH play AS CLASS
FROM ( SELECT outlook, windy, play FROM Golf )

In this case a sub-query is used to extract a dataset and the rules will consider
only the attributes outlook and windy. This is specified in the FROM clause.

Let us suppose now that a domain expert wants to consider the query Retrieve
a decision rules set with the minimum support of 0.25, to know when we can play
Golf or not (Q3)

MINE DECISION RULE Xmodel
WITH play AS CLASS

FROM Golf

WHERE support >= 0.25

The resulting table is filtered in the WHERE clause to retrieve the rules
having a computed support equal to 0.25 or above.

Now, let us consider the query Classify the data on the Xtest table based on
rules extracted from the Golf table, considering play as class attribute (Q4).

SELECT *

FROM Xtest AS XT, ( MINE DECISION RULE
WITH play AS CLASS
FROM Golf ) AS XM

WHERE PredictionJoin( XT, XM )

This query shows that it is possible to join (using a the PredictionJoin func-
tion) a table T containing uncategorized data (Xtest in this example) with a
table TR (that can be the result of the evaluation of a MINE DECISION RULE
expression) containing a set of rules. The result of a query of this kind is a table
containing the tuples of T already classified by the rules in TR.

5 Query Processing

For processing inductive queries using MINE DECISION RULE, we have ex-
tended the OR algebra introduced in [10] with the MineDR operator to mine
decision rules. In the following, we briefly explain the OR algebra and then
introduce MineDR.

Expressions in the OR algebra consist of OR operands and OR operators. An
OR operand is either an OR table, a path expression or the result of another
operation. In this section, we simply use the term “table” to refer to all the
possible operands, as long as no distinction is necessary. The set of OR operators
consists of the object-relational counterparts of basic relational operators — select
(0), join (p<), Cartesian product(x), project () —, set operators — union (U),
difference (—), intersection (N)), nest (v), unnest (v)-, and special operators to
handle row type object identity — map(¢) and cap(8) —. To the original operator
set, we incorporate the operators group-by (F) and rename (p).
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To this algebra we have added the MineDR operator to mine decision rules,

which is noted as follows:

Za,. (1)

where 7 is an input table with schema (Ai, Az, ..., An_1, A,) such that Ax (k=
1...n — 1) are general attributes and A, is a special attribute representing a
label or class for each tuple in 7. The MineDR operator computes as result a
table of row type decision-rule (see Section 3) containing a set of rules extracted
from table r.

To illustrate the concepts and operations related to the MineDR operator,
the evaluation of queries Q3 and Q4 is explained in the following. Let us consider
first the query Q3, Retrieve a decision rules set with the minimum support of
0.25, to know when we can play Golf or not. In this query, the classification is
based on the attribute play.
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Fig. 3. Query Tree for Qi

Figure 3 shows the query tree for Q3. As input to MineDR (Z), it is neces-
sary to indicate the name of the table containing the data set (in this case the
Golf table) from which rules will be generated, and the name of the attribute
classifying the data (play in this example). Next, MineDR. produces a table con-
taining a set of decision rules. In this query, the WHERE clause is used to filter
the rules to obtain only those that have a support equal to 0.25 or above, and
thus it is necessary to introduce the select () operator in the query tree.

Now consider the query Q4 where a set of decision rules is applied: Classify
the Xtest table based on rules extracted from the Golf table, considering play as
the class attribute. In the query tree in Figure 4, a new table is produced by
the MineDR operator by extracting decision rules from the GOLF table. At the
left side of the tree is the Xtest table with tuples representing instances to be
classified. To obtain the result of the query (classified instances), the Prediction
Join of the resulting table of MineDR with Xtest is executed. At the top of the
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Fig. 4. Query Tree for Q3

query tree, it is possible to see that all attributes of Xtest plus an attribute
containing the assigned class have been projected.

6 The DRMiner Prototype System

We have designed and developed in Java a prototype system, called DRMiner, to
process queries considering the MINE DECISION RULE expression. The main
components of DRMiner are: (a) User interface, (b) Analyzer and Translator,
and (c) Evaluation engine (See Figure 5).

Query Query  Analizor Algebra
— —4 . and | Smm—— Explgmsm
Translator =
User
Interface
Resulls
. By
Results Englne
=3RS
Data

Fig. 5. DRMiner System Architecture

Once a user types a query, the Analyzer verifies its syntax and translate it
into a query tree with nodes containing operators in the OR algebra augmented
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with MineDR. This query tree is passed to the evaluation engine, which uses a

rule learning algorithm to implement MineDR to classify data and returns a table
containing a set of decision rules as a result of the query. Our evaluation engine
currently integrates the PRISM [12] algorithm, because it easy to find standard
code implementations and documentation on the Internet. However, it is possible
to change this algorithm for another accomplishing the same classification task.

Function PREDICTIONJOIN (table T, table M)
Xresult = @
FOR each tuple ir = (ai,az,..,a,) €T
classified = false; class = null; C = @; xtuple=null;
FOR each tuple tar € M
IF satisfies(tr,tar) THEN
class = tjs.class
classified = true
IF —tjs.predicate.ordered THEN add(C,class)
ELSE break
ENDIF
ENDFOR
IF —tpr.predicate.ordered AND classified THEN
class = solve_controversy(C)

ENDIF
xtuple = (aj,asz,..an, class)
add (Xresult,xtuple)

ENDFOR

RETURN Xresult

Fig. 6. Prediction Join Algorithm

The DRMiner evaluation engine also implements a prediction join operation
to classify uncategorized data according to a set of rules. Figure 6 shows the
algorithm. The input is a table (7) with unseen instances (tuples) and a table
(M) with the decision rules to predict the class of each tuple of T. To classify
a new tuple, each rule is tested on the tuple and, when the conditions of a rule
are satisfied, then a class is found. If rules are ordered then the first class found
is assigned to the tuple, otherwise all possible classes are found and then the
controversy is solved to assign only one class to the tuple. The variable ztuple
stores each time a tuple t7 € T plus its assigned class. If none of rules fires, the
algorithm assigns the tuple a null class. The result is the Xresult table.

Finally, Figure 7 shows the DRMiner user interface. It is possible to type a
query to retrieve a table containing a set of rules. All queries mentioned in this
paper can be executed “as is” in DRMiner. For instance, in Figure 7, we can
see that a basic query to Retrieve a set of decision based on the Golf table and
considering play as attribute class is introduced and the results are shown.
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7 Conclusion and Future Work

This paper introduced the MINE DECISION RULE extension to SQL for min-
ing classification rules. It enables the user to express his/her requirements on
the extraction of decision rules from pre-classified data and apply the mined
rules over new, unclassified data. To evaluate queries incorporating MINE DE-
CISION RULE, the MineDR operator has been integrated into a typical OR
algebra. MineDR takes as input a source table and a specific class attribute, and
produces a table containing a set of rules. The DRMiner prototype system has
been developed to test our ideas.

Our future work includes research on query optimization. It will be focused
on deciding which algorithm, from a possible set of rule learning algorithms, is
the most suitable for a classification task, according to data features such as the
number of attributes, data volumes and the presence/absence of noise.
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